xxxxxxxxxx
var('l, W, w, S, Phi, r, x, y, z, v, alpha, beta, gamma, delta, a, b, c, d, f, F_, m_,M_')
var('C, L, R, mu, epsilon, F, m, M, A, B, D, V, E, Sigma, Pow, P_')
var('sigma, I, rho, q, Q, p, P, H, D, pi, J, c, mu_0, epsilon_0')
eqCGS = H - D/c == 4*pi*J/c
### Put your equation on the previous line ###
eq = eqCGS * (1/2)*mu_0^(-1/2)*pi^(-1/2)
### Put your multiplier on previous line ###
assume(c>0,mu_0>0,epsilon_0>0)
eq = eq.subs(C==(4*pi)^(-1)*epsilon_0^(-1)*C)
eq = eq.subs(L==(4*pi)*epsilon_0*L)
eq = eq.subs(R==(4*pi)*epsilon_0*R)
eq = eq.subs(mu==mu_0^(-1)*mu)
eq = eq.subs(epsilon==epsilon_0^(-1)*epsilon)
eq = eq.subs(F==(4*pi)^(1/2)*mu_0^(-1/2)*F)
eq = eq.subs(m==(4*pi)^(-1/2)*mu_0^(1/2)*m)
eq = eq.subs(M==(4*pi)^(-1/2)*mu_0^(1/2)*M)
eq = eq.subs(A==(4*pi)^(1/2)*mu_0^(-1/2)*A)
eq = eq.subs(B==(4*pi)^(1/2)*mu_0^(-1/2)*B)
eq = eq.subs(V==(4*pi)^(1/2)*epsilon_0^(1/2)*V)
eq = eq.subs(Phi==(4*pi)^(1/2)*epsilon_0^(1/2)*Phi)
eq = eq.subs(E==(4*pi)^(1/2)*epsilon_0^(1/2)*E)
eq = eq.subs(Sigma==(4*pi)^(-1/2)*epsilon_0^(-1/2)*Sigma)
eq = eq.subs(sigma==(4*pi)^(-1)*epsilon_0^(-1)*sigma)
eq = eq.subs(I==(4*pi)^(-1/2)*epsilon_0^(-1/2)*I)
eq = eq.subs(rho==(4*pi)^(-1/2)*epsilon_0^(-1/2)*rho)
eq = eq.subs(P==(4*pi)^(-1/2)*epsilon_0^(-1/2)*P)
eq = eq.subs(p==(4*pi)^(-1/2)*epsilon_0^(-1/2)*p)
eq = eq.subs(q==(4*pi)^(-1/2)*epsilon_0^(-1/2)*q)
eq = eq.subs(Q==(4*pi)^(-1/2)*epsilon_0^(-1/2)*Q)
eq = eq.subs(H==2*pi^(1/2)*mu_0^(1/2)*H)
eq = eq.subs(D==2*pi^(1/2)*epsilon_0^(-1/2)*D)
eq = eq.subs(J==(1/2)*pi^(-1/2)*epsilon_0^(-1/2)*J)
eq = eq.subs(c==mu_0^(-1/2)*epsilon_0^(-1/2))
eq = eq.expand()
eq = eq.canonicalize_radical()
eq = eq.simplify_full()
eq = eq.expand()
show('Original (CGS) version')
show(eqCGS)
show('MKS version')
show(eq)
xxxxxxxxxx
var('l, W, w, S, Phi, r, x, y, z, v, alpha, beta, gamma, delta, a, b, c, d, f, F_, m_,M_')
var('C, L, R, mu, epsilon, F, m, M, A, B, D, V, E, Sigma, Pow, P_')
var('sigma, I, rho, q, Q, p, P, H, D, pi, J, c, mu_0, epsilon_0')
eqMKS = -D+H==J
### Put your equation on the previous line ###
eq = eqMKS *2 * mu_0^(1/2)*pi^(1/2)
### Put your constant multiplier on the previous line ###
assume(c>0,mu_0>0,epsilon_0>0)
eq = eq.subs(C==(4*pi)*epsilon_0*C)
eq = eq.subs(L==(4*pi)^(-1)*epsilon_0^(-1)*L)
eq = eq.subs(R==(4*pi)^(-1)*epsilon_0^(-1)*R)
eq = eq.subs(mu==mu_0*mu)
eq = eq.subs(epsilon==epsilon_0*epsilon)
eq = eq.subs(F==(4*pi)^(-1/2)*mu_0^(1/2)*F)
eq = eq.subs(m==(4*pi)^(1/2)*mu_0^(-1/2)*m)
eq = eq.subs(M==(4*pi)^(1/2)*mu_0^(-1/2)*M)
eq = eq.subs(A==(4*pi)^(-1/2)*mu_0^(1/2)*A)
eq = eq.subs(B==(4*pi)^(-1/2)*mu_0^(1/2)*B)
eq = eq.subs(V==(4*pi)^(-1/2)*epsilon_0^(-1/2)*V)
eq = eq.subs(Phi==(4*pi)^(-1/2)*epsilon_0^(-1/2)*Phi)
eq = eq.subs(E==(4*pi)^(-1/2)*epsilon_0^(-1/2)*E)
eq = eq.subs(Sigma==(4*pi)^(1/2)*epsilon_0^(1/2)*Sigma)
eq = eq.subs(sigma==(4*pi)*epsilon_0*sigma)
eq = eq.subs(I==(4*pi)^(1/2)*epsilon_0^(1/2)*I)
eq = eq.subs(rho==(4*pi)^(1/2)*epsilon_0^(1/2)*rho)
eq = eq.subs(P==(4*pi)^(1/2)*epsilon_0^(1/2)*P)
eq = eq.subs(p==(4*pi)^(1/2)*epsilon_0^(1/2)*p)
eq = eq.subs(q==(4*pi)^(1/2)*epsilon_0^(1/2)*q)
eq = eq.subs(Q==(4*pi)^(1/2)*epsilon_0^(1/2)*Q)
eq = eq.subs(H==2^(-1)*pi^(-1/2)*mu_0^(-1/2)*H)
eq = eq.subs(D==2^(-1)*pi^(-1/2)*epsilon_0^(1/2)*D)
eq = eq.subs(J==2*pi^(1/2)*epsilon_0^(1/2)*J)
eq = eq.subs(epsilon_0==mu_0^(-1)*c^(-2))
eq = eq.expand()
eq = eq.canonicalize_radical()
eq = eq.simplify_full()
eq = eq.expand()
show('Original (MKS) version')
show(eqMKS)
show('CGS version')
show(eq)
As written | Sage Cell (line 4) |
∇×→B=1c∂→E∂t+4πc→J | eqCGS = B == c^(-1)*E + 4*pi*c^(-1)*J |
→D1=→E1+→P1 | eqCGS = D == E + P |
→F=m→a | eqCGS = f == m_ * a |
1√4μ0π | (1/2)*mu_0^(-1/2)*pi^(-1/2) |
→F=q(→E+→vc×→B) | eqCGS= f == q*(E + v*c^(-1)*B) |
The code enables you to multiply the entire equation by an overall factor. Here's an example to show how it works.
In the "CGS to MKS" code box, on line 4 enter eqCGS = H-D/c==4*pi*J/c
.
On line 6, enter eq = eqCGS * 1
(corresponding to a multiplier of 1), and press Evaluate
.
In the answer box, you will see: −2D√μ0√π+2H√μ0√π=2J√μ0√π.
Now change the overall multiplicative factor 1/√4μ0π on line 6: eq = eqCGS * (1/2)*mu_0^(-1/2)*pi^(-1/2)
, and press Evaluate.
You should now see the simpler equation: −D+H=J
Quantity | Gaussian | SI | Sage Cell |
Mass | m | m | m_,M_ |
Lenth | l | l | l |
Time | t | t | t |
Force | →F | →F | f, F_ |
Energy | W | W | W |
Energy density | w | w | w |
Power | P | P | Pow, P_ |
Power flow density | →S | →S | S |
Charge | q | q√4πϵ0 | q |
Surface charge density | σ,Σ | (σ,Σ)√4πϵ0 | Sigma |
Charge density | ρ | ρ√4πϵ0 | rho |
Current | I | I√4πϵ0 | I |
Current density | →J | →J√4πϵ0 | J |
Polarization | →P | →P√4πϵ0 | P |
Electric diple moment | →p | →p√4πϵ0 | p |
Electric field | →E | √4πϵ0→E | E |
Potential (Emf, Voltage) | Φ,V | √4πϵ0(Φ,V) | Phi, V |
D-field | →D | √4πϵ0→D | D |
Magnetic field | →B | √4πμ0→B | B |
Vector potential | →A | √4πμ0→A | A |
H-field | →H | √4πμ0→H | H |
Magnetization | →M | √μ04π | M |
Magnetic moment | →m | √μ04π→m | m |
Magnetic Flux | Fij | √4πμ0Fij | F |
Conductivity | σ | σ4πϵ0 | sigma |
Dielectric constant | ϵ | ϵϵ0 | epsilon |
Magnetic permeability | μ | μμ0 | mu |
Resistance | R | 4πϵ0R | R |
Inductance | L | 4πϵ0L | L |
Capacitance | C | C4πϵ0 | C |